CRISPR/Cas9 system and its applications in human hematopoietic cells.
نویسنده
چکیده
Since 2012, the CRISPR-Cas9 system has been quickly and successfully tested in a broad range of organisms and cells including hematopoietic cells. The application of CRISPR-Cas9 in human hematopoietic cells mainly involves the genes responsible for HIV infection, β-thalassemia and sickle cell disease (SCD). The successful disruption of CCR5 and CXCR4 genes in T cells by CRISPR-Cas9 promotes the prospect of the technology in the functional cure of HIV. More recently, eliminating CCR5 and CXCR4 in induced pluripotent stem cells (iPSCs) derived from patients and targeting the HIV genome have been successfully carried out in several laboratories. The outcome from these approaches bring us closer to the goal of eradicating HIV infection. For hemoglobinopathies the ability to produce iPSC-derived from patients with the correction of hemoglobin (HBB) mutations by CRISPR-Cas9 has been tested in a number of laboratories. These corrected iPSCs also show the potential to differentiate into mature erythrocytes expressing high-level and normal HBB. In light of the initial success of CRESPR-Cas9 in target mutated gene(s) in the iPSCs, a combination of genomic editing and autogenetic stem cell transplantation would be the best strategy for root treatment of the diseases, which could replace traditional allogeneic stem cell transplantation.
منابع مشابه
Synthesis a New Viral Base Vector Carrying Single Guide RNA (sgRNA) and Green Florescent Protein (GFP)
CRISPR/Cas9 system is a powerful gene editing tool in vivo and in vitro. Currently, CRISPR/Cas9 delivery cells or tissue with different vehicles are available, and Adeno- associated virus (AAV) in one of them. Due to AAV packaging size limitation, AAV base vectors that carry CRISPR/Cas9 system do not have florescent tag like GFP for simple detection and navigation of cells, containing AAV. The ...
متن کاملTransfusion Related Adverse Effects on Beta-Thalassemia Major and New Therapeutic Approaches: A Review Study
Thalassemia is one of the most common genetic disorders, worldwide.Beta-Thalassemia Major (BTM) is the most severe type, which reduces lifeexpectancy and quality of life. In this study, we searched the related keywords to subject from 1996-2019 in the Medline and Web of Science databases, therefore found 250 articles. Moreover, we categorized them into the studies on blood transfusions in...
متن کاملفناوری ویرایش ژن کریسپر ـ کَس 9 از منظر حقوق مالکیت فکری و ایمنی زیستی
In recent years, inexpensive and fruitful gene editing techniques such as CRISPR-Cas9 and NaAgo have revolutionized the biotechnology industry. Genetically edited organisms, gene therapy, treatment of diseases such as AIDS and editing human cells are some of the marvelous applications of such technologies. Using such technologies in large scale or granting exclusive rights on their products or ...
متن کاملEfficient Production of Biallelic RAG1 Knockout Mouse Embryonic Stem Cell Using CRISPR/Cas9
Background: Recombination Activating Genes (RAG) mutated embryonic stem cells are (ES) cells which are unable to perform V (D) J recombination. These cells can be used for generation of immunodeficient mouse. Creating biallelic mutations by CRISPR/Cas9 genome editing has emerged as a powerful technique to generate site-specific mutations in different sequences. Ob...
متن کاملCRISPR/Cas9, a new approach to successful knockdown of ABCB1/P-glycoprotein and reversal of chemosensitivity in human epithelial ovarian cancer cell line
Objective(s): Multidrug resistance (MDR) is a major obstacle in the successful chemotherapy of ovarian cancer. Inhibition of P-glycoprotein (P-gp), a member of ATP-binding cassette (ABC) transporters, is a well-known strategy to overcome MDR in cancer. The aim of this study was to investigate the efficiency and ability of CRISPR/Cas9 genome editing technology to knockdown ABCB1 gene expression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood cells, molecules & diseases
دوره 62 شماره
صفحات -
تاریخ انتشار 2016